Monika Szefczyk

From Bioorganic
Jump to: navigation, search


Lipinska.JPG

Hobby: European cinematography, science fiction & fantasy books, acting

e-mail: monika.szefczyk@pwr.edu.pl

Education

  • 01/2010 – 12/2013 - PhD, REQUIMTE, Faculdade de Ciências, Universidade do Porto and Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
  • 10/2004 – 06/2009 - MSc, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland

Employment

  • 10/2021 – to date - Assistant Professor, Department of Bioorganic Chemistry, Wrocław University of Science and Technology
  • 06/2018 – 09/2021 - Research Assistant, Department of Bioorganic Chemistry, Wrocław University of Science and Technology
  • 10/2014 – 9/2016 - Post-doc, Department of Bioorganic Chemistry, Wrocław University of Technology

Scientific visits

  • 2012 - Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
  • 2011 - Universidade Nova de Lisboa, Lisbon, Portugal

Certificates

  • Fundamentals of separation methods - chromatographic separation of organic compounds (HPLC, TLC, GC), UMK, Toruń, Poland
  • Food analysis, UMK, Toruń, Poland
  • Short course on physical characterization of nanostructures, Katholieke Universiteit Leuven, Belgium
  • Teaching course, UMK, Toruń, Poland

Awards and grants

  • "NANOFOLD - Peptide foldamer-based nanostructures as potential carriers of antiparasitic drugs"; NAWA grant under bilateral exchange of scientists between the Republic of Poland and the Portuguese Republic, no BPN/BPT/2021/1/00012/U/00001
  • "Peptide foldamer-based nanostructures"; NCN Sonata, no 2017/26/D/ST5/00341
  • Individual PhD grant, Fundação para a Ciência e a Tecnologia (Portugal), SFRH/BD/66297/2009
  • Award of Association of Engineers and Technicians of Chemical Industry (Toruń, Poland) for the Best Diploma Thesis in 2009
  • Award for the Best Poster on II PhD Student's Seminar in Toruń

Participation in grants

  • "Understanding cross-talk between amyloids"; NCN Opus, 2019/35/B/NZ2/03997
  • "Foldamer-based artificial enzymes"; NCN Sonata bis, 2013/10/E/ST5/00625
  • "New strategies for the immobilization of metal complexes on carbon materials"; NORTE-07-0124-FEDER-000067-Nanochemistry; FEDER
  • "Nanostructured catalysts based on carbon nanofibers for environmental applications"; NANO/NTec-CA/0122/2007; COMPETE
  • "Development and synthesis of metal complexes supported on mesoporous nanomaterials, as heterogeneous catalysts for isomerization in liquid and gas phases and oxidation reactions of alkanes"; PTDC/EQU-ERQ/110825/2009; COMPETE
  • "Projecto estrategico-LA 6-2011-2012"; PEst-C/EQB/LA0006/2011; COMPETE
  • "Nanostructered catalysts for selective oxidation of glycerol"; PP_IJUP2011/75; UP/Santander Totta
  • "Selective oxidation of renewable organic substrates"; PTDC/EQU-ERQ/101456/2008; I&DT/FCT

Publications

  1. Szefczyk, M.; Ożga, K.; Drewniak-Świtalska, M.; Rudzińska-Szostak, E.; Hołubowicz, R.; Ożyhar, A.; Berlicki, Ł., Controlling the conformational stability of coiled-coil peptides with a single stereogenic center of a peripheral β-amino acid residue RSC Adv. 2022, 12, 4640. View at Publisher
  2. Gąsior-Głogowska M. E., Szulc N., Szefczyk M. , Challenges in Experimental Methods. In: Computer Simulations of Aggregation of Proteins and Peptides. Methods in Molecular Biology Humana, New York 2022, 281. View at Publisher
  3. Szefczyk, M.; Szulc, N.; Gąsior-Głogowska, M.; Modrak-Wójcik, A.; Bzowska, A.; Majstrzyk, W.; Taube, M.; Kozak, M.; Gotszalk, T.; Rudzińska-Szostak, E.; Berlicki, Ł., Hierarchical approach for the rational construction of helix-containing nanofibrils using α,β-peptides. Nanoscale 2021, 13, 4000. View at Publisher
  4. Szulc, N.; Gąsior-Głogowska, M.; Wojciechowski, J. W.; Szefczyk, M.; Żak, A.; Burdukiewicz, M.; Kotulska, M., Variability of amyloid propensity in imperfect repeats of CsgA protein of Salmonella enterica and Escherichia coli Int. J. Mol. Sci. 2021, 22, 5127. View at Publisher
  5. Dyrka, W.; Gąsior-Głogowska, M.; Szefczyk, M.; Szulc, N., Searching for universal model of amyloid signaling motifs using probabilistic context-free grammars BMC Bioinformatics 2021, 22, 222. View at Publisher
  6. Szefczyk M., Peptide foldamer-based self-assembled nanostructures containing cyclic beta-amino acids Nanoscale 2021, 13, 11325. View at Publisher
  7. Szefczyk, M.; Węglarz-Tomczak, E.; Fortuna, P.; Krzysztoń, A.; Rudzińska-Szostak, E.; Berlicki, Ł., Controlling the Helix Handedness of ααβ-Peptide Foldamers through Sequence Shifting Angew. Chem. Int. Ed. 2017, 56, 2087. View at Publisher
  8. Rebelo, S. L. H.; Guedes, A.; Szefczyk, M. E.; Pereira, A. M.; Araujo, J. P.; Freire, C., Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials Phys. Chem. Chem. Phys. 2016, 18, 12784. View at Publisher
  9. Lipińska, M. E.; Novais, J.; Rebelo, S. L. H.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Freire, C., Microwave-assisted silylation of graphite oxide and immobilization of an iron(III) porphyrin for catalytic activation of hydrogen peroxide Polyhedron 2014, 81, 475. View at Publisher
  10. Lipińska, M. E.; Rebelo, S. L. H.; Freire, C., Iron(III) porphyrin anchored onto organosilylated multi-walled carbon nanotubes as an active catalyst for epoxidation reactions in mild conditions J. Mater. Sci. 2014, 49, 1494. View at Publisher
  11. Lipińska, M. E.; Rebelo, S. L. H.; Pereira, M. F. R.; Figueiredo, J. L.; Freire, C., Photoactive Zn(II)porphyrin-multi-walled carbon nanotubes nanohybrids through covalent β-linkages Mater. Chem. Phys. 2013, 143, 296. View at Publisher
  12. Lipińska, M. E.; Teixeira, D. M. D.; Laia, C. A. T.; Silva, A. M. G.; Rebelo, S. L. H.; Freire, C., β-Functionalized zinc(II)aminoporphyrins by direct catalytic hydrogenation Tetrahedron Let. 2013, 54, 110. View at Publisher
  13. Lipińska, M. E.; Rebelo, S. L. H.; Pereira, M. F. R.; Gomes, J. A. N. F.; Freire, C.; Figueiredo, J. L., New insights into the functionalization of multi-walled carbon nanotubes through aniline derivatives Carbon 2012, 50, 3280. View at Publisher
  14. Katafias, A.; Lipińska, M.; Strutyński, K., Alkaline hydrogen peroxide as a degradation agent of methylene blue-kinetic and mechanistic studies Reac. Kinet. Mech. Cat. 2010, 101, 251. View at Publisher
  15. Topolski, A.; Lipińska, M.; Kita, P.; Wiśniewska; J., Kinetic studies on promazine oxidation by Fe(III)/Cu(II) in acidic aqueous bromide solutions. Spectroscopic and kinetic non-additivity as evidence for the Cu(II)-Br-Fe(III)-type heterobimetallic complex formation Trans. Met. Chem. 2008, 33, 843. View at Publisher